首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   6篇
林业   31篇
农学   7篇
  54篇
综合类   7篇
农作物   13篇
水产渔业   19篇
畜牧兽医   77篇
园艺   4篇
植物保护   15篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   8篇
  2015年   7篇
  2014年   8篇
  2013年   18篇
  2012年   14篇
  2011年   21篇
  2010年   9篇
  2009年   11篇
  2008年   20篇
  2007年   18篇
  2006年   16篇
  2005年   12篇
  2004年   13篇
  2003年   13篇
  2002年   11篇
  2001年   8篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
排序方式: 共有227条查询结果,搜索用时 13 毫秒
71.
72.
We developed new F1 hybrids of Chinese cabbage (Brassica rapa L. ssp. pekinensis) that allow cultivation earlier in spring without heating by introducing extremely late-bolting alleles at two homologs of the flowering repressor Flowering Locus C (BrFLC2 and BrFLC3) from non-heading ‘Leafy Green Parental Line No. 2’. These new F1 hybrids were produced by the following four steps. First, the extremely late bolting selected lines were developed. These selected lines headed in spring after overwintering cultivation, whereas the conventional F1 cultivars flowered. Secondly, an investigation of the three plantings showed that our F1 hybrids formed heads when seeds were sown from mid-February to early March, whereas the conventional F1 cultivar did not form heads because of premature bolting. Thirdly, we identified some F1 hybrids with extremely late bolting during early spring cultivation in an investigation of many F1 hybrids. Finally, based on an investigation across four cold regions for 2 years, we compared the commercialization rate, defined as the proportion of plants greater than 2000 g in weight and with a flowering stalk less than 10 cm long. Then we identified a F1 of MS02 × 12-04 which had a high commercialization rate on average (92%), whereas the rates of three conventional F1 cultivars were only 0–2%. In the near future, these F1 hybrids will be valuable late-bolting cultivars despite climate change, permitting stable cultivation and harvest over wide regions.  相似文献   
73.
74.
75.
Four new abscisic acid related compounds (1-4), together with (+)-abscisic acid (5), (+)-beta-D-glucopyranosyl abscisate (6), (6S,9R)-roseoside (7), and two lignan glucosides ((+)-pinoresinol mono-beta-D-glucopyranoside (8) and 3-(beta-D-glucopyranosyloxymethyl)-2- (4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-(2R,3S)-dihydrobenzofuran (9)) were isolated from the antioxidative ethanol extract of prunes (Prunus domestica L.). The structures of 1-4 were elucidated on the basis of NMR and MS spectrometric data to be rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (1), rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid 3'-O-beta-d-glucopyranoside (2), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (3), and rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxabicyclo[3,2,1]- oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (4). The antioxidant activities of these isolated compounds were evaluated on the basis of oxygen radical absorbance capacity (ORAC). The ORAC values of abscisic acid related compounds (1-7) were very low. Two lignans (8 and 9) were more effective antioxidants whose ORAC values were 1.09 and 2.33 micromol of Trolox equiv/micromol, respectively.  相似文献   
76.
77.
78.
Extractive components were determined for the mantle muscle and liver of three species of Loliginidae squid, Sepioteuthis lessoniana, Loligo bleekeri, and L. edulis, and one species of Ommastrephidae, Todarodes pacificus, as a control. Total free amino acid levels and the major free amino acids in muscle, taurine, proline, glycine, alanine, and arginine, were significantly higher in Loliginidae squids than in T. pacificus. The main nucleotide was adenosine 5′-monophosphate, which did not differ significantly between species. Malate was the organic acid found in muscle in highest concentrations. The muscle of these species contained a large amount of trimethylamine oxide. A large amount of glycine betaine was also detected in the muscle, but showed no large species difference. From these results, the muscle of Loliginidae species is considered to have a much sweeter taste than that of T. pacificus. Compared with muscle, squid liver was characteristic with high contents of taurine, glutamate, bitter amino acids, succinate, propionate, trimethylamine, and glycine betaine, and with low contents of sweet amino acids, arginine, nucleotides, malate, and trimethylamine oxide. These results suggest that squid liver is characterized by a complicated taste containing umami, bitterness, sourness, fishy flavor, and less sweetness.  相似文献   
79.
Radish (Raphanus sativus L.) belongs to Brassicaceae family and is a close relative of Brassica. This species shows a wide morphological diversity, and is an important vegetable especially in Asia. However, molecular research of radish is behind compared to that of Brassica. For example, reports on SSR (simple sequence repeat) markers are limited. Here, we designed 417 radish SSR markers from SSR-enriched genomic libraries and the cDNA data. Of the 256 SSR markers succeeded in PCR, 130 showed clear polymorphisms between two radish lines; a rat-tail radish and a Japanese cultivar, ‘Harufuku’. As a test case for evaluation of the present SSRs, we conducted two studies. First, we selected 16 SSRs to calculate polymorphism information contents (PICs) using 16 radish cultivars and four other Brassicaceae species. These markers detected 3–15 alleles (average = 9.6). PIC values ranged from 0.54 to 0.92 (average = 0.78). Second, part of the present SSRs were tested for mapping using our previously-examined mapping population. The map spanned 672.7 cM with nine linkage groups (LGs). The 21 radish SSR markers were distributed throughout the LGs. The SSR markers developed here would be informative and useful for genetic analysis in radish and its related species.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号